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Radiation transfer is treated by the application of a narrow-band statistical model ( N B S M )  that takes 

emission and absorption gas spectral structures into account. A Monte Carlo method ( M C M )  using a net 

exchange technique was developed to integrate the radiative-transfer equation in nongray gas. The proposed 

procedure is based on a net-exchange formulation (NEF). This formulation provides an efficient way of 

systematicaUy fulfiUing the reciprocity principle, which avoids some of  the major problems usually associated 

with the Monte Carlo method; the numerical efficiency becomes independent of the optical thickness, highly 

nonuniform grid sizes can be used with no increase in computation time, and configurations with small 

temperature differences can be treated with very good accuracy. It  is shown that the radiative term is 

significant compared to the conductive term in just two specific regions in the emitting and absorbing gas in 

the immediate vicinity of the wall and in the external part of the boundary layer. The exchange Monte Carlo 

method ( E M C M )  is described in detail for a one-dimensional slab. 

1. I N T R O D U C T I O N  

Radiative heat transfer arises in many engineering devices (solar-energy systems, atmospheric systems, 

combustion systems, nuclear reactors, etc.). The present study is devoted to the development of a rather precise 

method for radiation exchange computations in an air/water vapor or air/carbon dioxide mixture. 

Numerical simulations of radiative heat transfer in gases arose mainly in meteorology and astrophysics 

research [1 ] and in engineering heat-transfer research on high-temperature systems [2 ]. These efforts concerned 

the development of gas radiation models and their implementation in complete radiative heat transfer simulations 

through integration of the radiative equation. Nowadays the use of exact line-by-line models remains unfeasible 

for complex systems. Most earlier authors used a gray gas assumption [3-5 ], and optically thin [6, 7 ] and thick 
13, 4, 6 ] limits were also frequently considered. Cess [71 treated a nongray gas for which the absorption coefficient, 

depending on the wavelength, was assumed to be independent of temperature. Novotny et al. [8 ] formulated the 

radiative term using the total band absorption based on an exponential wide-band model. However, there are more 

accurate radiative models such as the exponential wide-band model [9, 10], the random-statistics narrow-band 

model proposed by Malkmus in 1967 111 1, and the model of Soufiani et al. [12 1. This type of model has been 

applied more frequently to an emitting and absorbing medium. 
We will not enter into a detailed description of the use the MCM with the NBSM; one may also refer to 

works of Cherkaoui [13] and Liu et al. [14]. 

2. B A S I C  F O R M U L A T I O N  

We consider an emitting, absorbing, and nonscattering gas with the temperature profile T(y) between two 

vertical plates at the temperatures Twl and Tw2 respectively. Here the emissivities el and e2 = 1 (see Fig. 1). The 

following assumptions are made: 

D~partement de Physique, Facult~ des Sciences et Techniques, Errachidia, Morrocco; D~partement de 

Physique, Facult~ des Sciences, Meknes, Morrocco. Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 72, No. 5, 

pp. 937-945, September-October, 1999. Original article submitted January 25, 1998. 

1062-0125/99/7205-0905522.00 �9 1999 Kluwer Academic/Plenum Publishers 905 



x 

Surface  1 

Y~ 

A)  

Surface 2 

0 3~.~ d y 

Fig. 1. System coordinates and spatial discretization. 

�9 the gas has constant  physical properties; 

�9 the radiative dissipation in the x-direction is negligible in comparison with that in the y-direction; 

�9 the  surfaces are  black. 

2.1. Monochromat ic  Pormula t ion .  The  radiative flax per unit  area in the y direction is [13 ] 

q = Z ~ f d v  I . I td~ , -  l~Itd~, ; 
o o 

&-v (Y' Y' #) 
I v (y) = I v (0) r v (0, y, It) + Yf I b (y') dy' .  

0 Off 

T h e  local radiative balance at infinite volume of the gas at y is [13 ] 

~ ~ o~ (o, y, ~,) 
oy - z~  (I~ (Two) - ~ (r (y))) y Oy 

o 
d/~ + 2~ (Iv b (Tw2) -- 

t dry (d, y, p)  
- Iv b ( r  (y)))  f Oy dtz + 

0 

d b 1 02~:v (d, y, p) 
+ 2~ f k v (I~v ( r  (y')) - I~ (T (y))) dy' f d/z ; 

o o Oy' Oy 

(1) 

(2) 

(3) 

oC oC w~ (y, o) ~w2 (y, d) 2 gg _ _ _  + + ~ 0 Wv (Y,Y') 

Oy Oy Oy 0 Oy'Oy 
dy.  

The  ne t -exchange  rate  (NER) between two elementary gas layers  at coordinates y and y' is defined by 

02~pv gg 1 O2rv (d, y, p) 02tpvgg 
; - 2x (I  b (T (y')) - 8 (T (y))) f Itdit = . 

OyOy 0 OyOy' Oy'Oy 

The  ne t -exchange  rate between surface m (m -- 1 or 2) and the e lementary  gas layer at y is 

Og, 'gs (y, m) 1 aT v (0, y, It) &pv g (y, m) 
Oy -- st (I b (Twin) - I b (T (y))) f Oy dit = Oy 

0 

And the  ne t -exchange rate between the two surfaces is 

(4) 

(5) 

(6) 
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1 
~,~,s (1, 2) = 2z (Iv b (Twl) -- lv b (Tw2)) f v v (0, d,/z) dp = - ~pSvS (2, 1). 

0 
(7) 

Local radiation balances may  be expressed using partial exchanges. The resulting expression for the net inflow at 
y of monochromatic radiant  energy per unit volume is: 

,0g' v (y, y') o~0g (y) - ~ 2 gg 

Oy 0 OyOy' 

0~0 gs (y, m) 
dy' + 

m=Z' 1 Oy 
(8) 

The radiation balance for surface 1 is 

d 0W sg (1, y') ss 
s (1) = f , dy' + g~ (1, 2) .  

o Oy 

(9) 

2.2. Radiative Model. Approximations for the transmissivity Tv, averaged over Av, of a column of length L 

at temperature T, total pressure P, and mole fraction x of the absorbing species are presented. 

The box model was first developed by Penner  [151 with the smeared-rotational-line-model approach; it 

assumes that the spectral absorption coefficient kv is constant inside Av and equal to 

v+Av 
= f k , ,dv .  (10) 

v-Av 

The low-resolution transmissivity is then given by 

ray = exp ( -  kL) .  (11) 

The narrow-band statistical model due to Goody [1 ] involves two approximations. The first assumes that 

the lines are randomly placed. The lines centered outside and inside Av are considered identical. The low-resolution 

transmissivity for the Lorentz shape is given by 

For fast computations, LR is well approximated by [11 ] 

-Av-'  I; Z~y:tX ~ Z~:  " 

[ ( ),.2,]o.4 
LR(z )=z  1+ ~ . (13) 

The second approximation assumes that the line intensities Sj obey a statistical distribution law P(S) .  The most 

widely used relations will now be listed. 
(i) The uniform distribution, which assumes that all lines have the same intensity and half-width,  leads 

to I16] 

The mean parameters  k, 6, ~ are [1, 17 1 

M 
= A v -  l 1; S: ; (15) 

]=1 
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M 
= M - I  Z T] ; 

]=1 
(16) 

= 
~y 

Av -1 
/=1 

2 " 

(ii) The one-parameter  exponential-tailed distribution is given by [1 ] 

and leads to 

(17) 

(18) 

ray = exp 
_ (  2 ~  

1 + ~ ~_x_PL] l /z  
4~ ) 

(iii) The two-parameter  exponential-tailed-inverse distr ibution [131 

P ( S ) -  S l o g r  - 

(19) 

(20) 

leads to 

1/2 

Various narrow-band radiative models have been tested with line-by-line calculation for CO2-air and H20-  

air mixtures [ 12 ]. The most accurate temperature and flux distr ibutions are obtained with a narrow-band statistical 

model that  assumes the absorption lines to be randomly placed and  the intensities to obey an exponential-tailed- 

inverse distribution. 

2.3. Radiation Balances in the NBSM. The preceding expressions can be integrated over a spectral width 

Av. If the interval is narrow enough, the blackbody intensity can be assumed uniform. Integration of Eq. (5) gives, 
for instance, 

2 m gg 02 lfl/g ~"Av (Y, Y') 1 (y, y') 
- f d r ,  

OyOy' Av Av OyOy' 

2 ~ g g  
way (y, y') 

OyOy' 

- b 1 1 o 2 ~  (d ,  y,  ~) 
= 27r (lAy (T (y')) - l :v  (T (y))) - -  f dv f 

Av Av 0 OyOy' 
~,da. (22) 

Inverting the frequency and  angular integration leads to the following expression: 

OyOy' 

1 0 2 -  (d, y, ~,) 
- b - b (T (y))) f ~Av = 2st (Iav (T (y')) - lay 

o OyOy' 
(23) 

with 
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YAv (Y, Y,/~) = exp ( l( /  j2/) _ 2__~ 1 + - k ~ x P  l y  - y I - 1 . 

The integration over the whole spectrum is obtained by adding the contributions of the N b narrow bands: 

(24) 

_ 2  g g  ' 
0 2 /pgg  (y, y') O g'l (Y, Y ) Av 

I 

OyOy l= 1 OyOy 
(25) 

Similar expressions are obtained for the radiation balance of gas-surface and surface-surface exchanges. 

2.4. Discretization. The volume of gas is divided into N d layers of thickness Ayi. We emphasize that the 

layers are not assumed isothermal; the internal-temperature profiles are accounted for without restriction. If we 

consider the i-th gas layer between the abscissas Yi and Yi+l and the j-th gas layer between yj and yj+l, Eq. (23) 

can be integrated over y and y' to give the average NER between layers i and j: 

Yi+l  Y./+I ,.. 1 0 2 -  ' # )  ,ttdtt -o  -b  (T (y))) dy' f %'~ (y' y '  ~ (i, j) = 2~ f d y  f (I~v ( T  (y ' ) )  -- IAv 
Yi Y] 0 OyOy' 

(26) 

The average between layer i and surface 1 is given by 

Yi+ 1 b 1 0 -- (y ,  O , / . t )  -- b TAr 
WA~ (i, 1) = 2.~ f (7~,, (T (y)) - IAv (Twt)) d y  f Oy /~d~. 

Yi 0 

(27) 

An equivalent expression can be derived for ~gs(i, 2). 

The average radiation budget for the i-th layer is 

N d  2 

~t g (i) = ~ ~l  gg (i, j) + ~ ~ f f  (i, m) 
j = l  m = l  

(28) 

and for surface 1 

N d 
w/s (1 )=  X iff/sg (1,j) + ip/ss 

j=l 
(1, 2). (29) 

3. T H E  M O N T E  C A R L O  M E T H O D  

Radiative-transfer specialists commonly turn to the Monte Carlo method as a method for numerical 

simulation of a stochastic process; by invoking a probabilistic model of the radiative exchange process and applying 

Monte Carlo sampling techniques, it is possible to choose a semimacroscopic approach and avoid many difficulties 

inherent in the averaging process of the usual integral-equation formulation [ 18 ]. The aforementioned probabilistic 

model is usually designed in strict analogy with the physical processes of photon emission, transmission, and 

absorption. We will refer to such methods as analog Monte Carlo methods (AMCM). 
The present approach is significantly different. We make use of the MCM for numerical computation of 

multidimensional integrals. No physical probabilistic model is required. An integral formulation is chosen (NEF) 

and a statistical method (MCM) is used to compute integrals. A major feature of this a method is that the sampling 
laws could be chosen arbitrarily and do not match any physical property. 

3.1. Principle. The Monte Carlo procedure for numerical estimation of the integral 

A = f f (v) dv 
D 
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is the following: 

(i) A probability densi ty function (pdf) p(v) is chosen arbitrarily on D with the only constraint that  it must  
be nonzero on D. 

(ii) The  associated weighting function is defined as 

= [ (v) (30) w(v) p(v)" 

(iii) N values of v are generated randomly according to p(v), and for each value the corresponding weighting 
2 factor w is computed. The average value nWON and the variance aN(W) of these N realizations of the variable w(v) 

are computed. (W)N and a2N(W) themselves are random variables. 

(iv) 7[ = (W)N is an estimate of the integral A. The expectation of .4 is A. An estimate of the s tandard  
deviation of .;7[ (henceforth called the "statistical error") is 

~N(A) =N-O'SGN (W). 

When computing sums instead of integrals, the preceding procedure is valid if the pdf's are replaced by 
discrete probabilities. 

The key point of this method is the choice of the probabilities and the pdf. Again, this choice is a priori 

totally arbi trary.  However, an improper choice of the probabilities may lead, for a prescribed precision, to an 

extremely large sampling size. Obviously, the criterion is the variance of w(v). Thus one should choose p(v) such 
that the variations of f(v)/p(v) are minimal, keeping in mind that the random generation according to p(v) must 

be feasible and  computationally efficient. The probabilities may also be chosen to match physical properties (like 

the Lambert law for surface emission angles). This may lead to an increase in computational costs but provides the 
developer with a useful physical insight into the numerical procedure. 

3.3. Probabil i ty Functions.  The MCM is applied to compute the multidimensional integrals that  appear in 
the NEF. In this formulation, independent expressions correspond to the NER for each pair of cells. It is therefore 

natural (although not necessary) to preserve this independence in the numerical scheme. We present here the 

probability functions retained for the MCM integration of the NER between two gas layers. For details one may 
refer to [13 ]. 

The  total NER between the i-th and j- th gas layers is defined from Eq. (28): 

with 

Nb Yi+ 1 Yj+ 1 1 
Wgg(i,l)= ~ Av f dr f dy' f fgg(l ,y ,y ' , /~)d/~ 

l =  1 Yi Yj 0 

(31) 

fgg (l, y, y', #) = 2zr ( ~ / ( r  (y')) - ~ / ( T  (y))) 
02Vl(d, y, ~) 

OyOy' 
(32) 

Thus the total NER computation involves one discrete sum, one integral over angles, and two integrals over the 

coordinates y and  y'. According to the general procedure presented in the preceding paragraph, we need to define 

probabilities for each of these quantities. The associated weighting function will then can be can obtained from Eq. 

(30): 

fig (l, Y, y', ~) w~ g (l, y, y , p )  = 
p (0 pi (y) pj (y') q (z) " 

(33) 

3.3.1. Probability function for the positions y and y'. Uniform densities are used for positions within layers 
i and j given by 
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Fig. 2. Volumetric budget for pure carbon dioxide with a linear temperature 
profile varying from 305 K to 295 K and black surfaces. 

TABLE 1. Function f to Be Integrated and the Chosen pdf for Surface-Surface, Surface-Gas and Gas-Gas  Radiat ion 
Exchanges with Black Surfaces 

~P f Pi(Y) Pi(Y') q(t~) ZI 

g,ss (1, 2) 

~pgs (L m) 

~pgg (i, j) 

�9 -;b : s (z '  O.-:od'/') = .^ 
= ~ ( I t  ( T w o )  - I t  ( T w z ) ) , u ~ t ( U ,  d ,  #) 

. : ( t ,  y, ~ , )  = 
= 2~(~l(T(y))  -- 1 l (T(yw))) • 

x # O~l(y, Yw, kt) / Oy 

f/g(/, y, y',/z) = 2~(-~l(T(y')) - 
- -~l (T(y)))l~O~l(y, y', l~)/OyOy' 

1 /Ayi  

1/Ayi  

2~ : s ( l ,  0,  d,/~'3 
qO) 

f s ( l ,  Y, Yw, 
pi(y~q~tt'-) 

:g(l, y. y ,  
pi(y~pj(~)q(au'-) 

Y = Yi + RAYi,  (34) 

R is a random variable distributed uniformly in the interval [0, 1 ]. 

A similar expression gives the position y': 

y = y/+ Ray:. (3s) 

3.3.2. Probabili ty funct ion  for  the direction. The  direct ion cosine is given by an isotropic angu l a r  
distribution: 

/~ = R .  (36) 

3.3.3. Probability for spectral bands. In order to determine discrete probabilities for spectral bands,  we tried 
to est imate roughly the NER ~0~g(i, .i) between i and ] on each band l. This makes it possible to favor bands  on 
which most of the radiative exchanges occur. If the pdf chosen for y, y', and/~ are meaningful, one can simply state 

that if ~, f ,  and/Y are the average values of y, y', and/~ according to Pi(Y), Pj(Y'), and qq~), respectively, then a 

rough estimate of ~p~g(i, 1") is 

~ g  (l, ~, ~",~-) (37) 
z gg (i, :) 1 = 

p, (y-') pj (y") q 07)" 

Therefore  the following probability is chosen for the l-th spectral band: 

IZli 
p ( l )  --  N b  

~, IZkl 
k = l  

(38)  
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Fig. 3. Schmid t -Beckmann  temperature profile in pure carbon dioxide 

(xc02 = 1). 

Fig. 4. Comparison between net conductive exchange  and net radiative 

exchange in pure carbon dioxide. 
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Fig. 5. Schmidt-Beckmann temperature profile in an air-water vapor mixture 

(XH20 = 1.8- 10-Z). 

Fig. 6. Comparison between net conductive exchange and net radiative 

exchange in an air-water vapor mixture. 

For the random generation of a spectral band according to the set of discrete probabilities p(1), p(2) . . . .  p(Nb), l 

is chosen as the solution of the following double inequality: 

1-1 1 
p(k)  < R <  ~ p ( k ) .  (39) 

k=l  k=l  

Similar developments are required for gas-surface and surface-surface exchanges (Table 1). 

4. R E S U L T S  

4.1. Consistency of  the Method for Nonuniform Discretization. Highly nonuniform discretizations 

introduce no specific convergence difficulties. Figure 2 displays volumetric radiation budgets in pure carbon dioxide. 

A strongly varied discretization is used in order to allow an accurate simulation of the large radiation budget 

gradients at the walls: 10 layers with sizes ranging from 2 mm to 10 cm and two zero-thickness layers enabling the 

computation of the limit value of the radiation budget at the boundaries. These profiles are typical examples of 

convergence qualities that would not be achievable with a standard AMCM at acceptable computational costs. 

4.2. Estimation of Radiative Transfer in Natural Convection. Many authors have neglected the radiative 

term in natural convection owing to the fact that the problem becomes very complicated. This requires resolution 
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of the equation of natural convection coupled with the radiative-transfer equation, especially for radiative models 

that take emission and absorption gas spectral structures into account (e.g., line-by-line, MSBE). It is only recently, 

with the development of means and methods of calculation, that they have started to take into account the radiative 

effect. Here we give an estimate of this term from the theoretical temperature profile of Schmidt-Beckmann. And 
we are compare it with the conductive term. 

Figure 3 presents a temperature profile of carbon dioxide at the vicinity of a hot vertical plate. This medium 

represents a strongly absorbing gas. Figure 4 presents a temperature profile of water vapor in the vicinity of a hot 

vertical plate. This medium represents a weakly absorbing gas. From these two profiles we determine the NER by 

the method and model described above. We will not enter into a detailed description of the calculation of the 
conductive term; one may also refer to [13 ]. We can make the following conclusions. 

4.2.1. A strongly absorbing gas. The NER is not negligible compared to the conductive term in the immediate 

vicinity of and far from the hot wall in a strongly absorbing and emitting gas (Fig. 5). In the intermediate region, 

the NER rapidly becomes of secondary importance. 

4.2.2. A weakly absorbing gas. In this case it turns out that the radiative effect can have a very important 

role in the immediate vicinity of the hot plate (Fig. 6). Beyond that it becomes insignificant. 

This estimate of the radiative term in free convection shows that this term has an important effect mainly 

in the vicinity of and far from the hot plate. Thus the interaction of radiation and convection is significant, and it 
seems that a study of the coupled problem of radiation-convection in an emitting and absorbing gas is necessary. 

N O T A T I O N  

A, integral to be estimated; d, distance between the two surfaces; D, spatial domain of integration; /b, 

blackbody intensity; k, monochromatic absorption coefficient; k, narrow-band average transmission coefficient; l, 

narrow-band index; L, length of the column; m, surface index; N, number of realizations; N d, number of gas layers; 

N b, number of narrow bands; P, pressure of the gas; p, probability; q, direction cosine probability density function; 
R q , radiation heat flux; R, random variable distributed uniformly; r, ratio of the maximum and minimum values 

of the intensity within Av; I_R, Ladenburg-Reiche function [11 ]; M, number of lines centered within Av; S, 

integrated intensity of the line; w, statistical weight; W, equivalent width; x, molar fraction; y, coordinate; Yi, 

abscissa of separation between the (i - l)-th and (i)-th gas layers; Yw, coordinate of the surface; y_ abscissa of the 
center of layer (i); Ay, gas-layer thickness; Av, wave-number interval; v, wave number; 7, half-width; p, cosine of 
the cone angle (measured from the normal to the surface); 3, equivalent line spacing; g,(i, j), energy net-exchange 

rate between (i) and (/'), defined as the rate at which energy is emitted at (l) and absorbed at (i) minus the rate 

at which energy is emitted at (i) and absorbed at (1); ~(i), radiation budget of layer (i), W/m2; •, monochromatic 

transmission function; ~Av, Malkmus average transmission function; Zl, rough estimate of ~l; a, standard deviation. 

Superscripts and subscripts: (-)1, average for narrow band l, index l is omitted when irrelevant; g, gas layer; gg, 

exchange between two gas layers; gs, exchange between a gas layer and an opaque surface; sg, exchange between 
an opaque surface and a gas layer; s, opaque surface; ss, exchange between two opaque surfaces; b, blackbody; M, 

maximum; v, monochromatic quantity; w, wall (surface). Abbreviations: AMCM, analog Monte Carlo method; 

EMCM, exchange Monte Carlo method; MCM, Monte Carlo method; NEF, net-exchange formulation; NER, net- 

exchange rate; pdf, probability density function. 
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